Arbitrary Style Transfer is a technique used to produce a new image from two images: a content image, and a style image. The newly produced image is unseen and is generated from the algorithm itself. Balancing the structure and style components has been the major challenge that other state-of-the-art algorithms have tried to solve. Despite all the efforts, it's still a major challenge to apply the artistic style that was originally created on top of the structure of the content image while maintaining consistency. In this work, we solved these problems by using a Deep Learning approach using Convolutional Neural Networks. Our implementation will first extract foreground from the background using the pre-trained Detectron 2 model from the content image, and then apply the Arbitrary Style Transfer technique that is used in SANet. Once we have the two styled images, we will stitch the two chunks of images after the process of style transfer for the complete end piece.
translated by 谷歌翻译
Quantum computing (QC) promises significant advantages on certain hard computational tasks over classical computers. However, current quantum hardware, also known as noisy intermediate-scale quantum computers (NISQ), are still unable to carry out computations faithfully mainly because of the lack of quantum error correction (QEC) capability. A significant amount of theoretical studies have provided various types of QEC codes; one of the notable topological codes is the surface code, and its features, such as the requirement of only nearest-neighboring two-qubit control gates and a large error threshold, make it a leading candidate for scalable quantum computation. Recent developments of machine learning (ML)-based techniques especially the reinforcement learning (RL) methods have been applied to the decoding problem and have already made certain progress. Nevertheless, the device noise pattern may change over time, making trained decoder models ineffective. In this paper, we propose a continual reinforcement learning method to address these decoding challenges. Specifically, we implement double deep Q-learning with probabilistic policy reuse (DDQN-PPR) model to learn surface code decoding strategies for quantum environments with varying noise patterns. Through numerical simulations, we show that the proposed DDQN-PPR model can significantly reduce the computational complexity. Moreover, increasing the number of trained policies can further improve the agent's performance. Our results open a way to build more capable RL agents which can leverage previously gained knowledge to tackle QEC challenges.
translated by 谷歌翻译
Deep neural networks (DNN) are prone to miscalibrated predictions, often exhibiting a mismatch between the predicted output and the associated confidence scores. Contemporary model calibration techniques mitigate the problem of overconfident predictions by pushing down the confidence of the winning class while increasing the confidence of the remaining classes across all test samples. However, from a deployment perspective, an ideal model is desired to (i) generate well-calibrated predictions for high-confidence samples with predicted probability say >0.95, and (ii) generate a higher proportion of legitimate high-confidence samples. To this end, we propose a novel regularization technique that can be used with classification losses, leading to state-of-the-art calibrated predictions at test time; From a deployment standpoint in safety-critical applications, only high-confidence samples from a well-calibrated model are of interest, as the remaining samples have to undergo manual inspection. Predictive confidence reduction of these potentially ``high-confidence samples'' is a downside of existing calibration approaches. We mitigate this by proposing a dynamic train-time data pruning strategy that prunes low-confidence samples every few epochs, providing an increase in "confident yet calibrated samples". We demonstrate state-of-the-art calibration performance across image classification benchmarks, reducing training time without much compromise in accuracy. We provide insights into why our dynamic pruning strategy that prunes low-confidence training samples leads to an increase in high-confidence samples at test time.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
战场互联网事物(IOBT)将提高步兵部队的操作效率。但是,这需要自动资产,例如传感器,无人机,战斗设备和未驾驶的车辆,以合作,安全共享信息,并具有反对攻击的有争议的多域操作中的弹性。 CAPD通过提供背景感知的,政策驱动的框架来解决此问题,该框架支持战争空间中自治实体之间的数据和知识交流。我们提出了一个IOBT本体,该本体促进了受控的信息共享,以实现系统之间的语义互操作性。它的主要贡献包括提供具有共享语义模式的知识图,与背景知识的集成,有效的数据一致性和绘制推断以及支持基于属性的访问控制。 IOBT中的传感器提供了基于本体论创建填充知识图的数据。本文描述了使用CAPD检测和减轻对手动作的方法。 CAPD使用感应的数据和SPARQL查询的推理可以实现情境意识。例如,对手会导致传感器故障或劫持并破坏战术网络以降低视频监视。在这种情况下,CAPD使用基于本体的推理者来查看替代方法如何仍然可以支持任务。根据带宽的可用性,推理器通过主动转码或传输仅静止图像来启动降低的帧速率灰度视频。这种在任务感知环境和攻击环境中推理的能力使自主的IOBT系统能够在有争议的条件下表现出弹性。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
我们为250k参数feedforward,流媒体,无状态关键字发现模型的所有组件的所有组件提出了一种新型的2阶段次级量化量化训练算法。对于第一阶段,我们使用tanh(。)在致密层的重量上使用非线性转换来调整最近提出的量化技术。在第二阶段,我们在网络的其余部分上使用线性量化方法,包括其他参数(偏见,增益,batchnorm),输入和激活。我们进行大规模实验,对26,000小时的去识别生产,远场和近场音频数据进行培训(对4,000小时的数据进行评估)。我们在两个嵌入式芯片组设置中组织结果:a)具有商品臂霓虹灯指令套件和8位容器,我们使用sub 8位权重(4、5、8位)和8位的精度,CPU和内存结果 - 网络其余部分的量化; b)具有现成的神经网络加速器,用于一系列重量位宽度(1和5位),同时提出准确性结果,我们预测记忆利用率的减少。在两种配置中,我们的结果都表明,提出的算法可以实现:a)以虚假拒绝率(FRR)的虚假检测率(FDR)在检测错误权衡(DET)曲线上具有完整浮点模型的操作点(det)曲线的奇偶校验。 ; b)计算和内存的显着降低,最大提高了CPU消耗量的3倍,并且记忆消耗改善了4倍以上。
translated by 谷歌翻译
我们提出了一种针对半监督学习(SSL)的新颖方法,旨在克服关键字斑点(KWS)任务中训练和现实世界数据之间的分布变化。从训练数据分布的转移是现实世界中KWS任务的关键挑战:当在设备上部署新模型时,所接受数据的门控经历了分配的转变,从而使及时更新的问题通过后续部署进行了艰难。尽管发生了变化,我们假设标签上的边际分布不会改变。我们利用修改后的教师/学生培训框架,在该框架中使用未标记的数据增强了标记的培训数据。请注意,教师也无法访问新分布。为了通过人类和教师标记的数据有效地训练,我们根据信心启发式制定了教师标签策略,以减少教师模型的标签分布的熵;然后对数据进行采样以匹配标签上的边际分布。大规模实验结果表明,在远场音频训练的卷积神经网络(CNN),并根据不同分布绘制的远场音频进行评估,以相等的虚假拒绝获得了14.3%的虚假发现率(FDR)的相对相对提高。比率(FRR),同时在无分配变化下的FDR提高了5%。在从远场到近场音频的更严重的分布下,我们的方法在FRR时的FDR相对改善了52%,而原始FDR的相对相对相对提高了20%分配。
translated by 谷歌翻译
社交媒体通常被用作自然灾害期间交流的生命线。传统上,自然灾害推文使用自然灾害的名称从Twitter流进行过滤,并将过滤的推文发送以进行人体注释。人类注释创建用于机器学习模型的标签集的过程是费力的,耗时的,有时不准确的,更重要的是,在大小和实时使用方面不可扩展。在这项工作中,我们使用薄弱的监督来策划一个银标准数据集。为了验证其效用,我们在弱监督的数据上训练机器学习模型,以识别三种不同类型的自然灾害,即地震,飓风和洪水。我们的结果表明,在对手动策划的金标准数据集进行分类时,经过银标准数据集训练的模型大于90%。为了启用可重现的研究和其他下游公用事业,我们为科学界发布了银标准数据集。
translated by 谷歌翻译
本文向许多受访者调查了同时的偏好和度量学习。一组由$ d $二维功能向量和表格的配对比较``项目$ i $都比item $ j $更可取'的项目。我们的模型共同学习了一个距离指标,该指标表征了人群对项目相似性的一般度量,以及每个用户反映其个人喜好的潜在理想点。该模型具有捕获个人喜好的灵活性,同时享受在人群中摊销的度量学习样本成本。我们首先以无声的,连续的响应设置(即等于项目距离的差异)来研究这个问题,以了解学习的基本限制。接下来,我们建立了嘈杂的预测错误保证,可以从人类受访者那里收集诸如二进制测量值,并显示样品复杂性在基础度量较低时如何提高。最后,我们根据响应分布的假设建立恢复保证。我们在模拟数据和大量用户的颜色偏好判断数据集上演示了模型的性能。
translated by 谷歌翻译